
Kinematically Coupled Tea Set

1. Background

The goal for this project is to make a kinematically coupled wooden tea set placemat with interchangeable faceplates for mugs or a kettle. The kinematic coupling helps stabilize the tea set and allow for quick and convenient placement.

Mug placemat setting, showing coupled fit

Kettle placemat, showing grooved structure

Final product

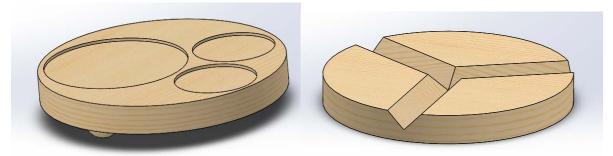
1A. Kinematic Couplings

Kinematic couplings are a deterministic mechanism that are frequently used in precision engineering designs. By having the degrees of freedom equal to the number of points of constraint, a kinematic coupling forms an exact constraint between two objects, thus creating repeatable, predictable, and precise placement. Kinematic couplings tend to be cheaper to manufacture and design, albeit at the cost of higher contact stresses.

1B. Application

I have a friend who really enjoys drinking tea and hosting tea parties. However, after he uses his electric tea kettle to heat up the water, he does not have anywhere to place the kettle to have it cool off. Although there is insulation on the bottom of the kettle and the heating element is not exposed, the kettle still remains very hot to the touch and he would prefer to not set it directly on the table. He also does not have any coasters so water rings are left everywhere during a tea party.

This kinematically coupled tea set not only provides a central place to put the kettle and mugs, but also provides a stylish centerpiece for a party. The kinematic couple helps ensure that the set remains stable and also enables the top plate to be removed for quick clean up.


2. Design

Each placemat is made up of two wooden disks with a traditional three-groove kinematic coupling. The top disk either has insets cut out for the kettle or 3 mugs with the spheres affixed underneath, while the bottom disk had three v-grooves cut out.

Many design changes occurred between proposal and final production, mainly due to the availability of materials and suggestions from the course instructors to speed up fabrication.

2A. Initial Design

Originally, the two disks were to be made out of pine wood, with diameter of 10.5" and a thickness of 1.25". The top plate would have three 1.5" diameter wooden hemispheres glued to its base which fit into the v-grooves in the bottom plate. The top plate would also have .125" deep insets cut out to fit an induction tea kettle (6" in diameter) and 2 mugs (3.5" in diameter). Technical drawings can be seen in Appendix A, Section I.

Original top plate design

Original bottom plate design

2B. Post-Feedback Design


After submitting the above design, I got the OK to fabricate with the suggestions to consider using the V-groove jig as well as consider using a bandsaw rather than a router to cut out the main circle shape. These suggestions were made to enable faster fabrication.

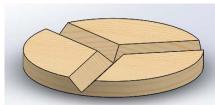
This led me to more closely inspect the available materials that were actually at the hobby shop. Although the website said that there would be pine stock of any size available, in reality, only the 10" x 10" x 0.75" plywood squares were available. Thus, I had to shrink the size of the disks from 10.5" to 9.5" so that they would fit. The inset holes were also shrunk to accommodate the smaller disk size, sizing instead for a smaller induction kettle and a smaller mug.

The reduced height of the plywood squares also forced me to choose a smaller sphere size for the kinematic coupling as the 1.5" groove would mean that a V-groove would be too large for the plywood. I decided to use the 1.25" spheres instead which would be positioned by drilling ³/₄" hole equally around the disk to match the flat. A ³/₄" dowel would then be fit through the hole and glued in to position the spheres. Technical drawings can be seen in Appendix A, Section II.

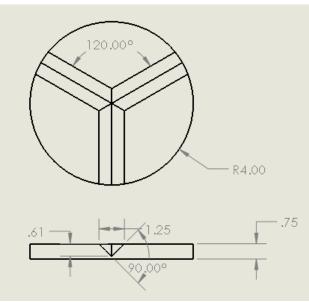
Post-feedback top plate design

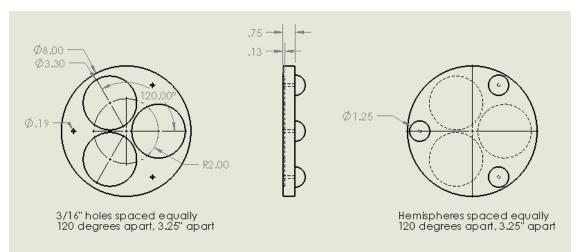

Post-feedback bottom plate design

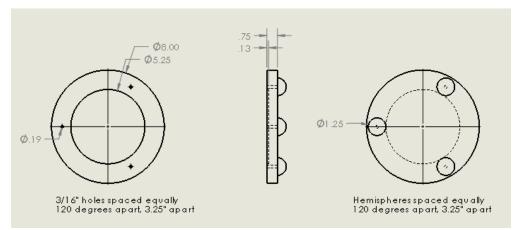
2C. Final Design


When I went to manufacture the above design, the original diameter of 9.5" was too large for the v-groove jig to cut. The disk diameter extended past the edges of the v-groove jig so we could no longer follow the jig's edge to get our 120 degree grooves. I decided to shrink the size of the disk to 8" rather than attempt to use a CNC machine to make the v-grooves so that I could keep a short production time. However, this smaller diameter of 8" meant that it was impossible to accommodate the 5.5" diameter kettle and the 3.3" diameter mugs at the same time.

I thus decided to make interchangeable top plates in order to still preserve the initial goal of having a place to set down a tea kettle and mugs in an easy-to-setup manner.


In addition, I found at the Hobby Shop that although the 2.75 website claimed that the dowels had diameter of 0.75", they were actually 3/16", so I redid those holes in the CAD while I was finalizing the design.


Kettle top plate and mug top plate of final design


Final bottom plate design

Final bottom plate

Final top plate – mug setting

Final top plate – kettle setting

3. Manufacturing

3A. Final Fabrication Plan

Order	Part	Material	Process	Machine	Estimated Fab Time
1	Bottom	Wood	Drill guide hole for band saw jig	Drill press	5 min
2	Bottom	Wood	Cut into disc	Band saw + jig	10 min
3	Bottom	Wood	Cut V- grooves	Router table + jig	10 min
4	Top – kettle plate	Wood	Cut inset circles Cut circle out of square piece	CNC Router	1 hour programming + 20 minutes
5	Top – mug plate	Wood	Cut inset circles Cut circle out of square piece	CNC Router	1 hour programming + 20 minutes

3B. Fabrication Notes

Most of the manufacturing went according to plan, although there were a few deviations from the final design.

A small hole 3/16" in diameter, 0.25" deep was drilled in the center of each of the base plates in order to use the band-saw circle cutting jig. The hole is in a non-critical location as a center hole would not affect the critical kinematic coupling interface between the v-groove and the spheres.

In addition, I ended up using 0.75" spheres instead of my planed 1.25" spheres because the v-groove route rig in the Hobby Shop was set up for these smaller balls.

Using the CNC router was very smooth except for my last cut on the top kettle plate. For some reason, the Hobby Shop's version of MasterCAM would not produce the correct G-Code for contour cuts, so I had to use my own copy. I also had some trouble with the v-router table jig in cutting straight lines. At first, this was because I forgot to put double sided tape between my piece and the jig. Later, I also found issues with the setup as someone had moved the guides and not recentered it with the 120 degree jig.

Once the main mechanical part of the kinematic coupling was done, I added a few aesthetic touches. I used a laser cutter to raster some text on to all of the plates and also applied coats of stain and sealant to help prevent water damage to the parts. The engraving is not important to the kinematic coupling as all of the text was in noncritical locations. The stain and sealant may add

some additional thickness to the v-groove and spheres. However, since a relatively even layer of thin coating was applied, the overall effect on repeatability and fit is probably minimal.

I had some difficulty in aligning the text of the top plates to the precise location, especially the "time for tea" pattern around the rim. I found out that this was because 1) the vector drawing program for the laser cutter did not respect the 1:1 measurement specified in my vector drawing program and 2) the laser cutter software would automatically remove whitespace, making positioning the cut piece with the laser's zero point very difficult. I fixed both problems by placing small dots at the corners of the 8x8 bounding rectangle which helped force the program to scale the image correctly.

Machined parts before stain

Machined parts after stain and laser engraving

4. Characterization

4A. Preliminary Analysis

To see the expected deflection and stresses that the kinematic coupling would take in normal operation, I used Alex Slocum's spreadsheet for three-groove couplings. Since I was using a traditional three-groove coupling with equally-spaced v-grooves, I did not need to change most of the values.

The most notable thing that changed in analysis from proposal to this writeup was the removal of the inclination angle. This last point was noted in proposal feedback and was the reason why I expected y-displacement when I was only applying a force in the –z direction.

Variable	Description	Value	Justification
Dbeq	Diameter of	0.75 inches / 19.1	
	hemisphere	mm	
Rbminor /	Minor and major	0.375 inches / 9.53	Ball is a perfect hemisphere so
Rbmajor	radius of contact	mm	minor and major radii are the same
	of ball		
Dcoupling	Diameter of	6.5 inches / 165 mm	
	coupling circle		
Fpreload	Preload applied	-6.67 N	Estimated weight of top plate (1.5
	over each ball		lbs) divided over 3 balls
(Xerr, Yerr,	Location of	(0, -101.6 mm, 0)	Will be using the laser pointer
Zerr)	where we are		technique to measure deformation.
	measuring error		We attached the laser pointer to the
	from centroid		outside edge of the circle, so
			deflection is (0, -4 in, 0).
Wood – Yield	Part of material	41.4 MPa	Flexural Yield Strength from
Stress	properties		http://www.matweb.com/search/Dat
			aSheet.aspx?MatGUID=7479536ff4
			40400eae71cc721bf068c0
Wood – Elastic	Part of material	9 GPa	http://www.engineeringtoolbox.com
Modulus	properties		/young-modulus-d_417.html
Wood –	Part of material	0.34	Averaging out Poisson Ratios from:
Poisson ratio	properties		http://www.matweb.com/search/Dat
			aSheet.aspx?MatGUID=7479536ff4
			40400eae71cc721bf068c0
Applied Z load	Force of the	-25.4 N	Estimated weight of kettle weight
at zero	fully loaded tea		(2 lbs) + water weight (1.69 kg for
inclination –	plate		57 fl oz) gives 5.7 lbs.
teapot			
Applied Z load	Force of the	-24 N	Estimated mug weight $(3 \times 1 \text{ lb}) +$
at zero	fully loaded		water weight (3 x 350g for 350 mL)
inclination –	mug plate		gives 5.3 lbs
mugs			
Inclination	Angle of the	0 degrees	
angle (degrees)	force applied		

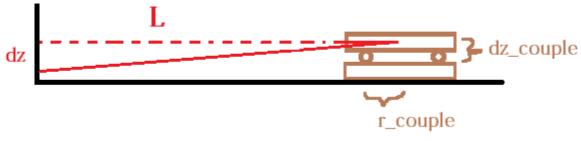
The results of the spreadsheet analysis predicts that the total displacement for the teapot plate is (0, 0, 0.0019 mm) while the mug plate is (0, 0, 0.0018 mm). This is an acceptable amount of deflection since the tea set is not a high precision application.

The spreadsheet results in full is included below: Spreadsheet result for teapot plate:

43 Fbntwo 10.7 sigtwo 8.35E+07 1.210 deltwo 2.69E-06 3.70E-06 2.48E-04 2.47E-0 44 Ball-Groove 2 Ball-Groove 3 Convertion 3 Con	00 14 14						0.24			
22 Largeit contact ellipse major diameter (mm) 0.495 23 Smallest contact ellipse major diameter (mm) 0.494 23 Smallest contact ellipse major diameter (mm) 0.494 24 Largeit contact ellipse raio 1.21 25 RMS applied force (N) 25.4 26 RMS striftess (Nrimon) 13 27 Z displacement caused by preload (mm) 0.003 28 Applied force's 2, YZ values and coordinates 29 Inclination angle (degrees) 0 30 Applied force's 2, YZ values and coordinates 31 FLz (N) = 0.000 XL (mn) = 0 xc (mm) 0.0000 XL (m) = 0.000 33 FLz (N) = 0.100 ML (mm) = 0 yc (mm) 0.0000 ZL (m) = 0.000 34 Revults: Herz stresses and eformations 35 Error displacements at the point of interest due to applied load (preload di		4			у	user defined	0.34			
23 Smallest contact ellipse major diameter (mm) 0.494 24 Largest contact stress ratio 1.21 24 Largest contact stress ratio 1.21 26 RMS striffness (Nimicron) 13 27 Z displacement caused by preload (mm) 0.003 28 Applied Z load at zero inclinati -24 29 inclination angle (degrees) 0				6,000						
24 Largest contact stress ratio 1.21										
25 RMS applied force (N) 25.4 26 RMS stiffness (Nmicron) 13 27 Z displacement caused by preload (mm) 0.003 28 Applied Z load at zero inclinati -24 29 inclination angle (degrees) 0 31 FLx (N) = 0.000 XL (mm) = 0 kc (mm) 31 FLx (N) = 0.000 XL (mm) = 0 kc (mm) 0.000 32 FLy (N) = 0.00 XL (mm) = 0 kc (mm) 0.000 YL (m) = 0.000 33 FLx (N) = 0.00 XL (mm) = 0 yc (mm) 0.000 YL (m) = 0.000 34 FLx (N) = 0.00 WL (mm) = 0 yc (mm) 0.000 YL (m) = 0.000 35 Error displacements at the point of interest due to applied load (preload displacement subtracted off) (micron) 0 </td <td></td> <td>iameter (mm)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		iameter (mm)								
26 RMS stiffness (Nmicron) 13 0.003 0.003 7 Z displacement caused by preload (nm) 0.003 0.003 0.003 27 Z displacement caused by preload (nm) 0.003 0.003 0.003 28 Applied Z load at zero inclinati -24 0 0.003 29 inclination angle (degrees) 0 0 Applied force's Z, Y, Z ralues and coordinates 0 30 Applied force's Z, Y, Z ralues and coordinates 0.000 XL (m) = 0.000 31 FLz (N) = 0.01 XL (mm) = 0 xc (mm) 0.000 YL (m) = 0.000 32 FLz (N) = 0.25 ZL (mm) = 0 zc (mm) 0.0000 ZL (m) = 0.000 34 Results: Hertz stresses and efformations 1										
27 Z displacement caused by preload (mm) 0.003 28 Applied Z load at zero inclinatis -24 29 inclination angle (degrees) 0 31 FLx (N) = 0.000 XL (mn) = 0 xc (mn) 0.0000 YL (m) = 0.000 32 FLy (N) = 0 0 YL (mn) = 0 yc (mm) 0.000 YL (m) = 0.000 33 FLz (N) = -25 ZL (mm) = 0 zc (mm) 0.000 ZL (m) = 0.000 34 Results: Hertz stresses and ceformations 35 Error displacements at the point of interest due to applied load (preload displacement subtracted off) (micron) 36 DetraX (mm) 0.0000 0.0000 0.0000 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
28 Applied Z load at zero inclinati -24 29 inclination angle (degrees) 0 30 Applied force's Z,Y,Z values and coordinates Coupling centroid location 31 FLx (N) = 0.000 XL (mm) = 0.000 32 FLy (N) = 0.010 XL (mm) = 0.000 YL (m) = 0.000 32 FLz (N) = 0.100 YL (m) = 0.000 YL (m) = 0.000 33 FLz (N) = 0.25 ZL (mm) = 0.26 (mm) 0.000 YL (m) = 0.000 34 Results: Hertz stresses and (eformations 0.000 0.000 <td></td>										
29 inclination angle (degrees) 0 0 30 Applied force's Z,Y,Z values and coordinates Coupling centroid location 31 FLx (N) = 0.00 XL (mm) = 0 xc (mm) 0.000 XL (m) = 0.000 31 FLx (N) = 0.00 XL (mm) = 0 yc (mm) 0.000 YL (m) = 0.000 32 FLz (N) = 0.10 YL (mm) = 0 yc (mm) 0.000 YL (m) = 0.000 33 FLz (N) = -25 ZL (mm) = 0 zc (mm) 0.000 ZL (m) = 0.000 34 Results: Hertz stresses and ceformations										
30Applied force's Z,Y,Z values and coordinatesCoupling centroid locationXL (m) =0.00031FLx (N) =0.00 XL (mm) =0 xc (mm)0.000XL (m) =0.00032FLy (N) =0 YL (mm) =0 yc (mm)0.000YL (m) =0.00033FLz (N) =-25 ZL (mm) =0 zc (mm)0.000YL (m) =0.00034Results: Hertz stresses and deformations		-24								
31 FLx (N) = 0.00 XL (m) = 0.000 XL (m) = 0.000 32 FLy (N) = 0 VL (mm) = 0 yc (mm) 0.000 VL (m) = 0.000 33 FLz (N) = .25 ZL (m) = 0 yc (mm) 0.000 YL (m) = 0.000 33 FLz (N) = .25 ZL (m) = 0 zc (mm) 0.000 ZL (m) = 0.000 34 Results: Hertz stresses and eformations		0								
32FLy (N) =0YL (mm) =0yc (mm)0.000YL (m) =0.00033FLz (N) =.25ZL (mm) =0zc (mm)0.000ZL (m) =0.00034Results: Hertz stresses and eformations										
33FLz (N) =		0.00			1 C					
34 Results: Hertz stresses and deformations 35 Error displacements at the point of interest due to applied load (preload displacement subtracted off) (micron) DeltaX (mm) 0.0000 DeltaX (mm) 0.0019 36 DeltaX (mm) 0.0000 DeltaY (mm) 0.0000 DeltaZ (mm) 0.0019 37 resulting rotation (degrees) v 0.0000 DeltaY (mm) 0.0000 DeltaZ (mm) 0.0019 38 Vector displacement (mm) 0.0019 Max shear Deflection (+into ball) (m) Contact ellipse size (m) 39 rroove normal forces (preload + applied load) (h Contact stress (preload + applied load) (Pa) Max shear Deflection (+into ball) (m) Contact ellipse size (m) 40 Ball-Groove 1 Ball-Groove 1 Ball-Groove 1 Ball-Groove 1 Ball-Groove 1 42 Fbnone 10.7 sigone 8.35E+07 1.210 delone 2.69E-06 3.70E-06 2.48E-04 2.47E-04 44 Ball-Groove 2 Ball-Groove 2 Ball-Groove 2 Ball-Groove 2 Ball-Groove 2 Ball-Groove 2 45 Fbnftwe 10.7 sigfour 8.35E+07 1.210 deltree 2.69E-06 3.70E-06 2.4		0			2					
35 Error displacements at the point of interest due to applied load (preload displacement subtracted off) (micron) DeltaX (mm) 0.0000 DeltaZ (mm) 0.0019 36 DeltaX (mm) 0.0000 DeltaY (mm) 0.0000 DeltaZ (mm) 0.0019 37 resulting rotation (degrees) v 0.0000 0.0000 DeltaZ (mm) 0.0019 38 Vector displacement (mm) 0.0019 0.0000 DeltaX (mm) 0.0019 39 rroove normal forces (preload + applied load) (h Contact stress (preload + applied load) (Pa) Max shear stress/(ult Deflection (+into ball) (m) Contact ellipse size (m) 40 Ball-Groove I Ball-Groove I Ball-Groove I Ball-Groove I Ball-Groove I 41 Ball-Groove I Ball-Groove I Ball-Groove I Ball-Groove I Ball-Groove I 42 Fbonne 10.7 sigone \$.35E+07 1.210 delone 2.69E-06 3.70E-06 2.48E-04 2.47E-04 43 Fbntwo 10.7 sigfnre \$.35E+07 1.210 deltwo 2.69E-06 3.70E-06 2.48E-04 2.47E-04 44 Ball-Groove 2 Ba			ZL (mm) =	0	zc (mm)	0.000		ZL (m) =	0.000	
36 DeltaX (nm) 0.0000 DeltaY (nm) 0.0000 DeltaZ (nm) 0.0019 37 resulting rotation (degrees) v 0.0000 0.0000 0.0000 0.0019 0.001										
37 resulting rotation (degrees) v 0.0000 0.0000 0.0000 38 Vector displacement (mm) 0.0019 0.0000 0.0000 0.0000 39 Froove normal forces (preload + applied load) (N Contact stress (preload + applied load) (Pa) Max shear stress/(ult. Deflection (+into ball) (m) Contact ellipse size (m) 40 Forove normal forces (preload + applied load) (N Contact stress (preload + applied load) (Pa) Max shear stress/(ult. Deflection (+into ball) (m) Contact ellipse size (m) 41 Ball-Groove 1 Ball-Groove 1 Ball-Groove 1 Ball-Groove 1 Ball-Groove 1 42 Fbnone 10.7 sigone 8.35E+07 1.210 delone 2.69E-06 3.70E-06 2.48E-04 2.47E-0 43 Fbntwo 10.7 sigtwo 8.35E+07 1.210 deltwo 2.69E-06 3.70E-06 2.48E-04 2.47E-04 44 Ball-Groove 2 Ball-Groove 3 Ball-Groove 3 Ball-Groove 3 Ball-Groove 3 Ball			o applied load (preload displacem							
38 Vector displacement (mm) 0.0019 Max shear Deflection (+into ball) (m) Contact ellipse size (m) 39 Froove normal forces (preload + applied load) (N Contact stress (preload + applied load) (Pa) Max shear Deflection (+into ball) (m) Contact ellipse size (m) 40 Ball-Groove 1 Ball-Groove 1 Ball-Groove 1 Ball-Groove 1 Ball-Groove 1 42 Fbnone 10.7 sigone 8.35E+07 1.210 delone 2.69E-06 3.70E-06 2.48E-04 2.47E-0 43 Fbntwo 10.7 sigtwo 8.35E+07 1.210 deltwo 2.69E-06 3.70E-06 2.48E-04 2.47E-0 44 Ball-Groove 2 Ball-Groove 3 Ball-Groove 3 Ball-Groove 3 Ball-Groove 3 Cortact ellipse 4 2.47E-04 2.47E-04 48 Fbnfive 10.7<				DeltaY (mm)	0.0000		DeltaZ (mm)	0.0019		
39 40 40 40 40 40 40 40 40 40 40 40 40 40					0.0000					
40 Froeve normal forces (preload + applied load) (N Contact stress (preload + applied load) (Pa) stress/(ult. from: Applied Load Preload only Rmajor Rminor 41 Ball-Groove 1 Ball-Groove 2 Ball-Groove 2 Contact stress (preload + applied load) (Pa) Stress/(ult. from: Applied Load Preload only Rmajor Rminor 42 Fbnone 10.7 sigone 8.35E+07 1.210 delone 2.69E-06 3.70E-06 2.48E-04 2.47E-0 43 Fbntwo 10.7 sigtwo 8.35E+07 1.210 deltwo 2.69E-06 3.70E-06 2.48E-04 2.47E-0 44 Ball-Groove 2 Contact stress (preload applied Load app	38 Vector displacement (mm)	0.0019								
41 Ball-Groove 1 Ball-Groove 1 Ball-Groove 1 Ball-Groove 1 Ball-Groove 1 42 Fbnone 10.7 sigone 8.35E+07 1.210 delone 2.69E-06 3.70E-06 2.48E-04 2.47E-0 43 Fbntwo 10.7 sigtwo 8.35E+07 1.210 deltwo 2.69E-06 3.70E-06 2.48E-04 2.47E-0 44 Ball-Groove 2 Ball-Groove 3 Core 4 Core 4 Core 4 Core	39 Traces and forest (proload d	applied load)	Contract stress (male ad + ann)	ind load (Pa)	Max shear	Deflection	n (+into ball) (m)	Contact ellips	e size (m)
42 Fbnone 10.7 sigone 8.35E+07 1.210 delone 2.69E-06 3.70E-06 2.48E-04 2.47E-0 43 Fbntwo 10.7 sigtwo 8.35E+07 1.210 delone 2.69E-06 3.70E-06 2.48E-04 2.47E-0 43 Fbntwo 10.7 sigtwo 8.35E+07 1.210 deltwo 2.69E-06 3.70E-06 2.48E-04 2.47E-0 44 Ball-Groove 2 2.47E-0	40 40	аррнеа юаа) (1	Contact stress (preioda + appli	ea 10aa) (Fa)	stress/(ult.	from:	Applied Load	Preload only	Rmajor	Rminor
43 Fbntwo 10.7 sigtwo 8.35E+07 1.210 deltwo 2.69E-06 3.70E-06 2.48E-04 2.47E-0 44 Ball-Groove 2 Ball-Groove 3	41 Ball-Groove 1		Ball-Groove 1			Ball-Groove 1			Ball-Groove 1	
44 Ball-Groove 2 Ball-Groove 2 Ball-Groove 2 Ball-Groove 2 Ball-Groove 2 45 Fbnthree 10.7 sigthree 8.35E+07 1.210 delthree 2.69E-06 3.70E-06 2.48E-04 2.47E-0 46 Fbnfour 10.7 sigfour 8.35E+07 1.210 delfour 2.69E-06 3.70E-06 2.48E-04 2.47E-0 47 Ball-Groove 3 Ball-Groove 3 Ball-Groove 3 Ball-Groove 3 Ball-Groove 3 48 Fbnfive 10.7 sigfive 8.35E+07 1.210 delfive 2.69E-06 3.70E-06 2.48E-04 2.47E-04	42 Fbnone	10.7	sigone	8.35E+07	1.210	delone	2.69E-06	3.70E-06	2.48E-04	2.47E-04
45 Fbnthree 10.7 sigthree 8.35E+07 1.210 delthree 2.69E-06 3.70E-06 2.48E-04 2.47E-0 46 Fbnfour 10.7 sigfour 8.35E+07 1.210 delfour 2.69E-06 3.70E-06 2.48E-04 2.47E-0 47 Ball-Groove 3 Ball-Groove 3 Ball-Groove 3 Ball-Groove 3 Ball-Groove 3 48 Fbnfive 10.7 sigfive 8.35E+07 1.210 delfive 2.69E-06 3.70E-06 2.48E-04 2.47E-04	40 Thatas	10.7	sigtwo	8.35E+07	1.210	deltwo	2.69E-06	3.70E-06	2.48E-04	2.47E-04
46 Fbnfour 10.7 sigfour 8.35E+07 1.210 delfour 2.69E-06 3.70E-06 2.48E-04 2.47E-04 47 Ball-Groove 3 Ball-Groove 3 Ball-Groove 3 Ball-Groove 3 Ball-Groove 3 Ball-Groove 3 Constant 1000 (Constant 10000 (Constant 1000 (Constant 100	4.3 Fontwo	10.7							D. II C	
47 Ball-Groove 3 Ball-Groove 3 Ball-Groove 3 48 Fbnfive 10.7 sigfive 8.35E+07 1.210 delfive 2.69E-06 3.70E-06 2.48E-04 2.47E-04		10.7				Ball-Groove 2			Ball-Groove 2	
48 Fbnfive 10.7 sigfive 8.35E+07 1.210 delfive 2.69E-06 3.70E-06 2.48E-04 2.47E-0	44 Ball-Groove 2		Ball-Groove 2		1.210		2.69E-06	3.70E-06		2.47E-04
	44 Ball-Groove 2 45 Fbnthree	10 .7	Ball-Groove 2 sigthree	8.35E+07		delthree			2.48E-04	2.47E-04 2.47E-04
49 Ebneiry 10.7 sinsing 8.35E+07 1.210 dalain 2.60E.06 2.70E.06 2.48E.04 2.47E.0	44 Ball-Groove 2 45 Fbnthree 46 Fbnfour	10 .7	Ball-Groove 2 sigthree sigfour	8.35E+07		delthree			2.48E-04 2.48E-04	
10.7 SIEST 0.37F-00 2.40E-04 2.47E-0	44 Ball-Groove 2 45 Fbnthree 46 Fbnfour 47 Ball-Groove 3	10 .7 10 .7	Ball-Groove 2 sigthree sigfour Ball-Groove 3	8.35E+07 8.35E+07	1.210	delthree delfour	2.69E-06	3.70E-06	2.48E-04 2.48E-04 Ball-Groove 3	
50	44 Ball-Groove 2 45 Fbnthree 46 Fbnfour 47 Ball-Groove 3	10 .7 10 .7	Ball-Groove 2 sigthree sigfour Ball-Groove 3	8.35E+07 8.35E+07	1.210 1.210	delthree delfour	2.69E-06	3.70E-06	2.48E-04 2.48E-04 Ball-Groove 3	2.47E-04

Spreadsheet result for mugs plate:

	~	U	v	0	L		9			5
20 Matla	ibgroove =	4	where each ball and groove is de	fined individual	ly	user defined	0.34			
	yield strength (Pa, psi)		4.14E+07	6,000						
22 Larges	st contact ellipse major dia	meter (mm)	0.490							
23 Smalle	est contact ellipse major di	ameter (mm)	0.489							
	st contact stress ratio		1.20							
	applied force (N)		24							
	stiffness (N/micron)		13							
	placement caused by preloa		0.003							
	ied Z load at zero inclinati	-24								
	ation angle (degrees)	0								
	ed force's Z,Y,Z values a				Coupling centro					
31 FLx (1		0.00	XL (mm) =	0	xc (mm)	0.000		XL (m) =	0.000	
32 FLy (0	YL (mm) =	0	yc (mm)	0.000		YL (m) =	0.000	
33 FLz (1	· ·		ZL (mm) =	0	zc (mm)	0.000		ZL (m) =	0.000	
	lts: Hertz stresses and d									
			o applied load (preload displacen							
36 Delta		0.0000		DeltaY (mm)	0.0000		DeltaZ (mm)	0.0018		
	ting rotation (degrees) v				0.0000					
	or displacement (mm)	0.0018								
39	e normal forces (preload +	applied load) ()	Contact stress (preload + appl	lied load) (Pa)	Max shear	¥	n (+into ball) (m	-	Contact ellips	
40		appnea ioady (1)		ieu iouuș (1 uș	stress/(ult.		Applied Load	Preload only	Rmajor	Rminor
	Froove l		Ball-Groove 1			Ball-Groove I			Ball-Groove 1	
42 Fbn		10.4	sigone	8.27E+07		delone	2.56E-06	3.70E-06	2.45E-04	2.45E-04
	ntwo	10.4	sigtwo	8.27E+07	1.198	deltwo	2.56E-06	3.70E-06	2.45E-04	2.45E-04
44 Ball-G	Froove 2		Ball-Groove 2			Ball-Groove 2			Ball-Groove 2	
45 Fbn	nthree	10.4	sigthree	8.27E+07	1.198	delthree	2.56E-06	3.70E-06	2.45E-04	2.45E-04
46 Fbn	nfour	10.4	sigfour	8.27E+07	1.198	delfour	2.56E-06	3.70E-06	2.45E-04	2.45E-04
47 Ball-C	Groove 3		Ball-Groove 3		-				Ball-Groove 3	
48 Fbnfiv	ve	10.4	sigfive	8.27E+07	1.198	delfive	2.56E-06	3.70E-06	2.45E-04	2.45E-04
49 Fbnsiz	x	10.4	sigsix	8.27E+07	1.198	delsix	2.56E-06	3.70E-06	2.45E-04	2.45E-04
50						•	•			


4B. Real-Life Analysis

In order to characterize the design, we decided to use a laser pointer to the tea set and exploit Abbe errors.

We attached a laser pointer to the outside rim of the tea set, so about 4 inches away from the center. We then set the tea set 12 feet away from a wall and put a piece of paper where the laser hit the wall. We then marked where the laser was without any load on the kinematic coupling. We then loaded the kinematic coupling with either a teapot full of water or 3 mugs full of water and then marked where the laser was again upon loading. We performed 3 trials for each top plate-bottom plate configuration.

After all trials were completed, we then measured the y and z deflection from the center. From this, we can get the angular deflection at the coupling point itself.

Let L be the distance from the wall and (dy, dz) be the deflection measured at the wall. We want to know what the deflection will be at the coupling point itself. Let the radius of the coupling circle be r_{couple} and the total deflection be $(dy_{couple}, dz_{couple})$. The following picture shows the relevant parameters for the z direction. An analogous picture exists for the y direction.

By similar triangles, it's clear to see that

$$dz_{couple} = rac{dz \cdot r_{couple}}{L}$$

From this, we get the following results:

Teapot, Base 1					
y (mm) z (mm) dy_couple (mm) dz_couple (mm					
-3.05	5.53	-0.0689	0.1249		
2.06	6.17	0.0465	0.1393		
4.14	6.44	0.0935	0.1454		

Teapot, Base 2					
y (mm)	z (mm)	dy_couple (mm)	dz_couple (mm)		
-1.63	2.07	-0.0368	0.0467		
-2.7	2.07	-0.0610	0.0467		
7.26	2.07	0.1639	0.0467		

	Teapot, Overall							
	Average dy_couple (mm)	Standard Deviation (mm)	Average dz_couple (mm)	Standard Deviation (mm)				
Base 1	0.0237	0.0682	0.1365	0.0086				
Base 2	0.0221	0.1008	0.0467	0.0000				
Both	0.0229	0.0861	0.0916	0.0453				

The upward tilt in the teapot measurements indicates that there is probably some unevenness in the sphere placement which is causing strange angular deflections.

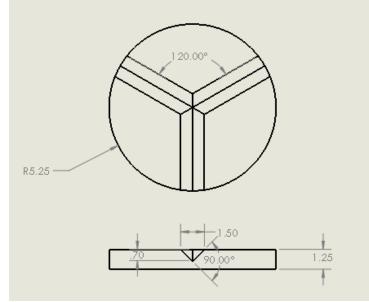
Mugs, Base 1					
y (mm)	z (mm)	dy_couple (mm)	dz_couple (mm)		
7.31	-3.77	0.1651	-0.0851		
6.32	-5.48	0.1427	-0.1237		
3.77	-6.8	0.0851	-0.1535		

Mugs, Base 2					
y (mm)	z (mm)	dy_couple (mm)	dz_couple (mm)		
2.36	-10.8	0.0533	-0.2439		
0.13	-12.28	0.0029	-0.2773		
-0.53	-13.96	-0.0120	-0.3152		

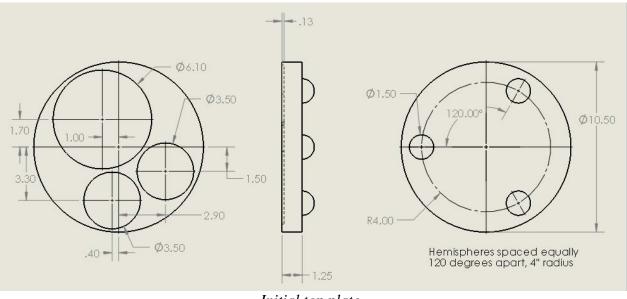
	Mugs Overall							
	Average dy_couple (mm)	Standard Deviation (mm)	Average dz_couple (mm)	Standard Deviation (mm)				
Base 1	0.1310	0.0337	-0.1208	0.0280				
Base 2	0.0148	0.0279	-0.2788	0.0291				
Both	0.0729	0.0658	-0.1998	0.0840				

There is nearly a 10x - 100x difference between calculated and measured effort. This order of magnitude difference probably comes from the imprecision in the characterization procedure. Although care was taken to make sure that the tea set did not move too much during repeated loadings, the base may have shifted during reapplication of the load. Also, the laser exhibited quite a bit of diffraction and the calipers that were used to measure distances had accuracy of 0.01 mm, so the amount of human judgement used to determine the center of the beam and what to measure with the calipers probably induced quite a bit of error. In addition, the weights used for loading in the spreadsheet analysis were pure estimates and were probably not applied solely in the z direction, which may account for the y displacement that we measured as well. Since this is not a high accuracy application, the large discrepancies are ok since we still have < 1 mm deflection.

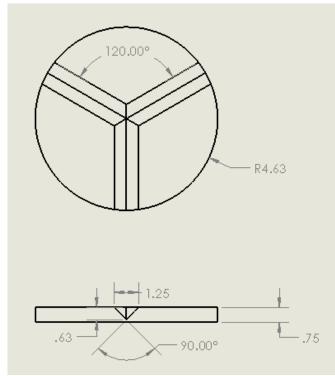
5. Conclusions and Future Directions


Overall, I'm pretty pleased with my work on this kinematic coupling. I learned a lot about how kinematic couplings work, learned how valuable jigs are for speeding up fabrication and how to use Abbe errors to help characterize a system. I made a teaset that I'm very proud of and am excited to give this to my friend.

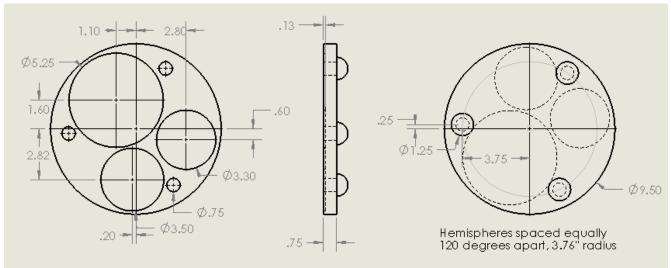
For the future, I should definitely have a better understanding of what tools and materials are available in the design progress. Although I did do my due diligence by going online and


attending office hours, I could have been more proactive in asking what exactly was available so I did not have to have as many design steps. In addition, the laser method only characterizes y and z displacement but not rotational displacements or x. Further characterization would be needed to fully verify that the kinematic

Appendix A: Technical Drawings I: Initial Design



Initial bottom plate



Initial top plate

II: Post-Feedback Design

Post-feedback bottom plate

Post-feedback top plate